A beam radiation monitor based on CVD diamond sensors: latest results

Anna Di Ciaccio for the University of Roma Tor Vergata and INFN Tor Vergata group

LFF Workshop Luminometry and IP beam monitors for high luminosity Flavour Factories: techniques and detectors November 22-23, 2012 Napoli

Outline

- Synthetic diamond as sensor material
 - Diamond properties
 - Diamond suppliers
- Diamond sensor applications in HEP:
 - Present: radiation detection beam monitors
 - Beam Conditions Monitor
 - Beam Loss Monitor
 - Future: Particle tracking in high radiation environment
 - Diamond trackers for vertex reconstruction
- R&D work in Roma Tor Vergata University on diamond sensors readout with a fast FE SiGe electronics in view of the SuperB project

	Diamond	Si	
Band gap [eV]	5.48 Low leakage cur.	1.12	
Electron mobility [cm ² /Vs]	2200	1450	
Hole mobility [cm ² /Vs]	1600 Fast signal collection	500	
Saturation velocity [cm/s]	2×10^7	0.8 x 10 ⁷	
Dielectric constant	5.7 Low capacitance, low noise	11.9	
e-h creation energy [eV]	13 Smaller signal	3.6	
e-h pairs per MIP [µm⁻¹]	36 (typically 1/5 of Si)	89	
Displacement energy [eV]	43 High radiation hardness	13 ~ 20	
Decrease in charge	Not observed	No signal	
collection after irradiation with 1 x 10 ¹⁵ proton/cm ² *	:by ~40 % at 5 x 10 ¹⁵ p/cm ²		

Diamond in a very high radiation environment is a unique material but need a much more performant FE electronics compared to silicon: low noise (~100e) and low threshold (~1000e)

Main CVD Diamond Properties

- Fast timing (<1 ns)
- High Radiation tolerante (>1 MGy)
- Single-particle detection and current monitoring
- Efficiency for charged particles practically 100%
- 500 V @ 100 pA, so very low power consumption
- Leakage current of a few pA, do not increase with the accumulated dose
- insensitive to temperature variation

Radiation hardness

- A real challenge : application for 1st (& 2nd) tracking layer of experiments at the LHC and more importantly at the HL-LHC
- Diamond offers:
 - Radiation Hardness
 - Survive to the end of the experiment
 - Low dielectric constant
 - \succ Low capacitance \rightarrow low noise
 - Low leakage current
 - Low readout noise
 - Room temperature operation
 - No cooling, Low mass construction
 - Fast signal collection
- Fluence of interest is $O(10^{15-16})$ cm⁻²
 - For 1st pixel layer at R ~4 cm

- 70 MeV protons 3 times more damaging than 24 GeV protons
- 26 MeV protons seem to be even more

Production of CVD diamond sensors

(a)

(b)

(c)

Chemical Vapor Deposition (CVD) diamond growth:

INFN

- using a gas at low temp. (< 1000 °C) and low pressure (~0.1 atm) in a nonequilibrium process
- CVD diamond grown in μ wave reactors on nondiamond substrate
 - Allows deposition of diamond on large areas in arbitrary geometries.
- CVD Diamonds are composed of columnar microcrystals.
 - **Growth speed only** ≈ μ**m / h**
 - Slow=expensive Naples, November 22, 2012

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

Scanning electron micrograph from the growth side of a CVD diamond sample

Signal from CVD Diamonds

- No processing: put electrodes on, apply electric field. **BUT :**
 - Surface preparation and metallization nontrivial !
- 2 types: SsCVD and pCVD sensors

INFN

- For pCVD trapping on grain boundaries and in bulk
 - Very similar to heavily irradiated silicon
- Parameterized with Charge Collection Distance, defined as

CCD measured on recent 1.4 mm thick pCVD wafer from E6, and after thinning to 0.8 mm

• CCD = average distance e-h.p. its co.o. aparts of parts of sensors Naples, November 22, 2012 for beam monitoring

Diamond Manufacturers

- Several large sensors delivered in the last years :
 - Diamond Detectors Ltd, UK
 - II-VI Infrared, USA
- But DDL this year ending the business!
 - re-structuring from Element Six/DeBeers
- Element Six/DeBeers remains a strong supplier but they do not delivery sensors with metallization, only raw material!

CVD Diamond Sensors application as Radiation Monitor

- Crucial application as radiation monitors to protect Silicon vertex trackers from a high radiation dose due to i.e. beam losses or high background rates
 - Need to abort beam in presence of a current spike or a prolonged radiation dose letal for the SVT
- A fast, radiation hard detector with a low leakage current is therefore required
 - False signals must be avoided.
 - Monitor must be reliable
- CVD diamond sensors already employed for this purpose by several experiments:
 - BaBar, Belle, CDF, ATLAS, CMS, LHC-b, ALICE

Beam loss and conditions monitor in ATLAS e CMS

- CMS and ATLAS use diamond already since a few years as a sensor for a beam loss and conditions measurements close to the beam pipe.
- Same type of device used by CMS & Atlas inside their trackers
 - CMS: ~ z=±1.8m and r=4cm
 - Atlas: ~ $z=\pm 3.5m$ close to beam pipe
- Act as part of a radiation monitoring system for equipment safety and ٠ radiation level/beam monitoring
- A beam conditions monitor can in particular address the following ۲ issues:
 - Allow to protect equipment during instabilities / accidents
 - Providing feedback to the machine thereby helping them to routinely provide optimum conditions
 - Monitor the instantaneous dose during operation
- Clear advantages of diamond respect to silicon for this application
 - Radiation hard, low leakage currents at room temperature, fast signal response

- All LHC exp's use diamonds for beam monitoring & accident protection
 - Current and counting mode operation, TOF capability
 Today O(100) diamond sensors employed
- CMS is building Pixel Luminosity Telescope

 48 scCVD pixel modules (5 mm x 5 mm)
- ATLAS is building a new Diamond Beam Monitor
 24 pCVD pixel modules (21 mm x 18 mm)
- Upgrade plans for HI-LHC to include diamond as candidate for innermost pixel tracker layer(s)

Need ultra-fast FE electronics

Exp.	Application	# ch	cm ²	FE	Year
Babar	BCM	12	12	DC	2002
CDF	BCM	13	16	DC	2006
ATLAS	BCM	8	7.7	MIP	2008
ATLAS	BLM	12	32	DC	2008
CMS	BCM	32	7.7	MIP/DC	2009
CMS	PLT	200 k	30	Pixel	2012
ATLAS	DCM	730 k	90	Pixel	2013

Table 2: Diamond detector built and proposed for beam onitoring and luminosity measurements (PLT and DCM).

for beam monitoring

ATLAS- DBM - Installation

Future ATLAS Diamond Pixel Monitor

- 24 diamond pixel modules arranged in 8 telescopes around interaction point provide
 - Bunch by bunch luminosity monitoring
 - Bunch by bunch beam spot monitoring

The SuperB - SVT radmon

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

SVT Radiation Monitor

Diamond Rad Monitors in SUPERB

Goals to achieve:

- protect the SVT from high beam losses
- time of flight measurements to distinguish collisions events from background
- Iuminosity measurement

Tentative detector's support shape

INFN

Geant4 results: rate per mm² for radiative Babbha

Expected rate on Beam-monitor rings 1, 2

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

Geant4 background results @ L = 1 x 10^{36} cm⁻² s⁻¹

Radiative Babba production

	Rate (MHz)	Edep/sec (GeV/s)	nHits/Event	Edep/Hit (GeV)	Rate/mm ² (MHz/mm ²)	% Hits (>150KeV)	Z (mm)
Tube Ext (Back)	19.9	1780	0.09	9.0x10 ⁻⁵	0.035	22%	-80
Tube Ext 2 (Back)	46.4	2080	0.20	4.5x10 ⁻⁵	0.082	10%	-126
Tube Ext (Forw)	12.8	1115	0.06	8.7x10 ⁻⁵	0.023	21%	80
Tube Ext 2 (Forw)	30.0	1305	0.13	4.3x10 ⁻⁵	0.053	10%	126

e+e- Pair production : dominant bkgd

	Rate (MHz)	Edep/sec (GeV/s)	nHits/Event	Edep/Hit (GeV)	Rate/mm ² (MHz/mm ²)	% Hits (>150KeV)	Z (mm)
Tube Ext (Back)	199	16x10 ³	0.88	8.2x10 ⁻⁵	0.35	19%	-80
Tube Ext 2 (Back)	116	5x10 ³	0.51	4.2x10 ⁻⁵	0.21	9%	-126
Tube Ext (Forw)	203	17x10 ³	0.90	8.1x10 ⁻⁵	0.36	19%	80
Tube Ext 2 (Forw)	119	5x10 ³	0.52	4.4x10 ⁻⁵	0.21	9%	126

21

Geometry of the detector

8 diamond detector for ring

Beam monitor caracteristics $L = 1 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$

detector sized	8 X16 mm²
leakage current	8 nA
Ionization current	0.67 nA
hits rate	130KHz
Detector Transit time	20 ns
Electronic Integration time	30 ns
Electric resistance	$10^{11} \ \Omega$ cm
Energy threshold	150KeV

Tentative electronic diagram

Anna Di Ciaccio: R&D on Diamond Sensor for beam monitoring

Diamond sensor tested in Tor Vergata laboratoty

- Mono crystal diamond
- thickness
- Area
- HV
- Dissipation power

0,5 mm 4 x 4 mm² 400 Volt 8 μW

PreAmplifier, AC, (BJT SiGe, BFP740)

- Voltage supply
- Sensitivity
- noise
- Input impedance
- B.W.
- Power consumption
- Low cost
- Radiation hardness

5 Volt 6 mV/fC 500 e⁻ RMS 50 Ohm 30 MHz 8-10 mW/ch 2 – 3 eur./ch

50 Mrad, 10¹⁵ n cm⁻²

• Good CVD diamond detectors have a symmetric I–V behavior and can therefore be biased positively or negatively.

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

Test with Americium-241 + Sr-90

INFN (______

sources

Coincidence with cosmics

Naples, November 22, 2012

INFN

Signal minimum ionization particle

Naples, November 22, 2012

INFN

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

20ns/div.

H8 Beam test – beam at CERN: time resolution measurements (Novembre 2012)

- A diamond detector 4x4x0.5 mm³ with 2 set-up (see next slides) was tested together with 4 RPC chambers (1mm gas gap each) on a muon beam
- One of the four RPC was used to measure the time of flight with the diamond detector

Experimental H8 test-beam: set up 1 → (Diamond orthogonal to the beam)

INFN

H8 set up 2 (diamond parallel to the beam)

Diamond detector/Front-end electronics consistency checks

Diamond m.i.p. signal distribution

INFN

The diamond amplitude distribution, fitting the expected Landau distribution, is used to correct the timing for the signal amplitude

Time vs signal amplitude

noise for 2 stage +1 stage amp

Front end noise distributions: - Left plot :2 stage amp followed by 1 stage amp (for ortogonal orient) - Right plot: only 2 stage amp (for parallel orientation)

noise for 2 stage amp

for beam monitoring

Expected diamond time resolution

- The diamond timing is strongly noise dependent through the relationship $\sigma = t_{rise}/(S/N)$ with $t_{rise} = 10$ ns
- The following resolutions are obtained for the two orientations of the diamond
 - − Orthogonal orientation (d= 0.5mm) \rightarrow (S/N)Diamond_{orthogonal} = 16 \rightarrow σ_t = 625 ps
 - Parallel orientation (d = 4mm) \rightarrow (S/N)Diamond_{parallel} = 133 \rightarrow $\sigma_t = 75 \text{ ps}$

Signal/Noise ratio (orth. orientation)

Signal/Noise ratio (parallel orientation)

Anna Di Ciaccio: R&D on Diamond Sensors for beam monitoring

Preliminary results on combined diamond-RPC timing

- Assuming $\sigma_{comb}^2 = \sigma_{Diam}^2 + \sigma_{RPC}^2$
- For orthogonal orientation the overall jitter is dominated by the diamond
 - $-\sigma_{Comb} = 1 \text{ ns}$
 - σ_{RPc} = 0.42 ns (1mm gas gap)
 - $\rightarrow \sigma_{\text{Diam}} \approx 900 \text{ ps}$

• For parallel orientation the jitter is dominated by the RPC

Next steps

- First results look very promising: a time resolution of < 100 ps was measured.
 - Further measurements are planned at the H8 testbeam and GIF with several CVD diamonds
 - We plan to make a test of our sensors next years also at the Daphne accelerator in Frascati
- The collected data allow to finalize the design of a new full custom 8 channel FE chip in SiGe technology, in preparation in Tor Vergata.

Summary

- Many progress in the diamond world
 - Successful application in all LHC experiments as radiation monitors
 - Diamond trackers is also under way !
 - R&D work for the application in SUPERB as radiation monitor is proceeding
 - First tests in our laboratory and H8 quite successful