Fast luminosity monitoring based on radiative Bhabha scattering measurement using diamond sensors

Cecile Rimbault, LAL-Orsay, in2p3/CNRS

LFF Workshop Napoli November, 22-23 2012

Fast luminosity monitoring based on radiative Bhabha scattering measurement using diamond sensors

Motivation Bhabha generators study Best location for the sensors Next plan

LAL group resources

Contributors:

P. Bambade, C. Rimbault, F. Blampuy (Master student), Stefano Tammaro (Master student), F. Bogard & S. Wallon (mech. eng.),S. Conforti (FE electronics), P. Barillon (sensors)

Pending applications / t.b.c. : Post-doc, PhD student

Budget: P2IO LABEX grant, IN2P3, France-Japan bilateral funds

Collaboration

Italy: INFN Pisa: E. Paoloni, A. Perez (Bruno) INFN Frascati: M. Boscolo (Touschek) Roma II University: A. di Ciaccio

Japan: (S.Uehara) KEK

CEA Saclay: M. Pomorski LIST Diamond Sensors Laboratory

Radiative Bhabha process

e⁺e⁻ beam part. scattering via quasireal photon exchange at quasi-zero angle.

Can be understood as a Compton scattering convoluted with the quasi real photon spectrum (Equivalent Photon Approximation)

- Main source of background
- Main contribution to beam life time limitation

Radiative Bhabha and other backgrounds

	Cross section	Evt/bunch xing	Rate
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	e	0.3THz
e ⁺ e⁻ pair production	~7.3 mbarn	~18	7GHz
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz
Ύ(4S)	O(10 ⁻⁶) mbarn ~2.5/Millio		l KHz
	Loss rate	Loss/bunch pass	Rate
Touschek (LER)	I4kHz / bunch (+/- 2 m from IP)	~7/100	I4 MHz

lifetime	HER τ(min)	LER τ(min)
Radiative Bhabha lifetime	4.7	7
Touschek No collimators, $\boldsymbol{\epsilon}_{x}$ with IBS	26	10.2
Touschek With Collimators, ϵ_x with IBS	22	7

Radiative Bhabha process

e⁺e⁻ beam part. scattering via quasireal photon exchange at quasi-zero angle.

Can be understood as a compton scattering convoluted with the quasi real photon spectrum (Equivalent Photon Approximation)

- Main source of background
- Main contribution to beam life time limitation
- Large cross section (~250mbarn) proportional to luminosity → used for luminosity measurement and control
- Requirement: $\Delta L/L < 10^{-3}$ in 10 to 1ms

Radiative Bhabha process-simulation tools

BBbrem: MC simulation for radiative Bhabha process, performed in CM. Input: CM energy, min energy of real photon i.e. $E_{\gamma} > x E_{beam}$, Nb of events Output: Cross section, 4momentum of each particle (including virtual γ)

GuineaPig ++ : Beam-beam interaction simulation tools. Beam-beam effect such as beamstrahlung and beam size effect

Input: beams spec. Asked backgrounds: Compton min energy of virtual i.e E_{γ*}>x E₀²/E_{beam} Output: Luminosity, Nb of Bhabha produced, 4momentum of final particle

BBbrem / GP++ energy cuts comparison (x_{min} = 1%)

BBbrem: min energy of real photon $E_{\gamma} > x_{min} E_{beam}$ (0.053GeV)

GP++ : min energy of virtual $E_{\gamma*} > x_{min} E_0^2/E_{beam}$ (~5 10⁻¹⁰ GeV)

Cross section and Beam Size Effect

Correction for cross section due to finite beam size

Comparison of the energy and angular distributions

Comparison of the angular distributions without beam angular divergence

Delimitation of the useful phase space for luminosity measurements

- L ~ 10^{36} cm⁻²s⁻¹ σ ~ 270 mbarn (Eγ > 1% Ebeam) → expected total rate ~ 270 10^6 / 0.001 s
- Must also work for lower initial luminosities: 10²⁻⁴ dynamic range
- Non luminosity scaling contamination (e.g. from Touschek and beam gas Coulomb losses) < 1%

Estimated counting rate in 5 \times 5 mm² sensor placed ~2.5 cm from beam ~ 10⁷ / 0.001 s

sCVD diamond radiation resistant (up to ~ 10 MGy)

Tracking in FF of SuperB with MAD8 simulation

Diamond sensors studies started at LAL in context of ATF2

Best locations to maximise Bhabha / Touschek & beam gas rates

Distribution of scattered Bhabha positron

	With apertures in MAD8 (5X5mm diamond sensor)	With apertures in MAD8 (horizontal length of 10mm)	
1‰ specification at L _{nom} (10 ⁶ /N _{Bhabha} produced)	3.10 ⁻³		
1‰ specification at L _{nom} /10 ²	3.10 ⁻¹		
1% specification at L _{nom} /10 ² (10 ⁴ /N _{Bhabha} produced)	3.10 ⁻³		
LER: N _{Bhabha detected} / 15188 after the 1 st bend	1,98.10 ⁻³	2,90.10 ⁻³	
LER: N _{Bhabha detected} / 15188 after the 2 nd bend	2,87.10 ⁻²	5,33.10 ⁻²	
LER: N _{Bhabha detected} / 15188 after the 3 rd bend	4,56.10 ⁻²	5,16.10 ⁻²	
HER: N _{Bhabha detected} / 14911 after the 1 st bend	9,99.10 ⁻³	1,23.10 ⁻²	
HER: N _{Bhabha detected} / 14911 after the 2 nd bend	3,41.10 ⁻²	6,18.10 ⁻²	
HER: N _{Bhabha detected} / 14911 after the 3 rd bend	4,40.10 ⁻²	4,97.10 ⁻²	

Estimation of the fraction of Bhabha particles generated with GP++ in the sensor acceptance

Bhabha electron loss distribution in 20m after IP

Short term SuperB plan

 Implement sensor in GEANT4 "IR +/- 21 m" for scattered electron/positron (on-going) (need extension of FF modelisation in Bruno)

Final Focus (FF) Geometrical Model

- Detailed Geant4 (Bruno) model of the FF from -16 to 16 mts from IP
 - Beam pipes

Bruno modelisation of the FF from -16 to 16 m from IP

Slide from S. Tammaro

Short term plan

- Implement sensor in GEANT4 "IR +/- 21 m" for scattered electron/positron (on-going) (need extension of FF modelisation in Bruno)
- Optimize vacuum chamber geometry (impedance constraint)
- Input to optics lattice and magnet design
- Touschek and beam gas rates at sensor location to limit nonluminosity scaling (started)
- Radiation estimation
- Design sensor & readout prototype for DAPHNE test

Longer term

- Further study of scattered photon detection
- Radiation hardness investigation
- Bunch by bunch luminosities (specification, requirements,...)
- Feedback methods (dither method, calibration,...)
- Beam size effect

Thank you